
ABSTRACT

DATA ERRORS & MODEL MISFITS

INTRODUCT ION

 The constraints that satellite data and other observations place on the forecasting of 

volcanic ash clouds has a precise and useful description in terms of the uncertainties in 

wind, ash source, and the position of ash clouds in the atmosphere. Using a Bayesian 

analysis, we define the uncertainty in the position of the ash cloud both in terms of the errors 

in satellite retrievals and the errors in projecting ash downwind from its source in the 

atmosphere. The constraints that satellite data place on transport models and on ash cloud 

forecasts is maximized using variational calculus and the Hessian of the misfit between 

satellite observations and model predictions, and this process can be rapidly automated. For 

any linear transport model, (i.e. NAME, FLEXPART, or Ash3d), the procedure here is exact, and 

quantitatively determines the quality of a forecast for any given set of satellite data, any given 

wind field, and any given model (or combination of models), with variable source parameters. 

 Here we illustrate the efficacy of our method using two different eruptions measured with 

two different satellite platforms; Eyjafjallajokull in 2010 measured with SEVIRI, and Kasatochi 

in 2008 measured with MODIS. These examples illustrate conditions which illustrate the 

evolving constraints on forecasts of volcanic ash clouds during the same eruptive sequence.

 At the IUGG-WMO Workshop on Ash Dispersal Forecasts (WMO) 
meeting in Geneva on volcanic ash clouds, uncertainty in cloud forecasts 
was highlighted as one of the primary concerns in hazard mitigation for 
these clouds. A comparison of models for the same eruption parameters 
at a previous WMO meeting in 2010 illustrated how diverse the models 
used by VAACs are when compared in detail for deposition. A similar 
study was recently done comparing model ash clouds with real ash 
clouds, with similar results. 

 These comparisons show that errors introduced by models, by data 
used by models, and by errors in satellite data used to constrain models 
result in variable outcomes, compromising ash cloud forecasts. We 
address this problem of uncertain forecasts from uncertain data 
quantitatively.  
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How does uncertainty affect forecasts of volcanic ash clouds?

How do we maximize the constraints observations place on
model results and forecasts?
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The error in the prior satellite data       is described with the prior 

distributions above, which combined produce variance
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Errors in transport models and in winds      are encapsulated into 

an error parameter       through the likelihood of model      inputs
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BACKGROUND

METHOD
The evidence contains the information needed to quantitatively 
resolve uncertainty in forecasting ash clouds

From Bayes theorem, the posterior distribution over the model 

parameters is proportional to the product of both the prior and 

likelihood distributions:

Eyjafjallajokull volcano, Iceland, erupting in May, 2010.  The ash 

cloud downwind of the volcano occupies a narrow range of altitudes, 

and this behavior produces a strong, dominant posterior distribution 

in source parameters.

For forecasting this posterior must be normalized by the integral 

over all ranges of input parameters       , which determines the 

evidence                        given by the data constraints:

The second derivative        of the log posterior is scaled by the 

errors and can be written

The partial derivatives of the Hessian        with respect 

to       or        shows, in the limit when the number of satellite 

observations greatly exceed the number of model parameters, 

that maximum data contraints occur with

where      is the identity matrix and        is the Hessian of the 

misfit of model and satellite data.

Eyjafjallajokull
volcano



EXAMPLE  1 : Kasatochi Eruption, 2008

CONCLUS IONS

EXAMPLE  2 : Eyjafjallajokull Eruption, 2010

24 HOUR FORECAST

11 HOUR FORECAST

• Log Posterior of the source of the ash
cloud, from MODIS data, with each

      mass eruption rate.

• The shape of these peaks
determines the uncertainty.

A Bayesian framework for making forecasts provides the means to 
measure misfits of models with data, and uses this misfit to correctly 
determine the optimal data constraints to make a forecast.

The uncertainty in forecasting is a combination of these inherited errors, 
errors in transport models, and errors in wind.

The error inherited from these satellite data directly affect forecasts.
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Small Variance

Underestimating errors (small variance, 
or narrow approximation of peaks above) 

eliminates good solutions.

Small Variance

Use of optimal errors (full 
approximation of peaks above) 
results in maximum data constraints.
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Contour Interval = 1 tonne/km2

Optimal Variance

If the estimate of errors is too liberal, then 
poor model solutions contaminate the 
forecast.

Large Data Variance
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Use of the errors inherited from the satellite 
data and measured from the misfits of model 

comparisons to satellite data, as shown, 
provide the optimal forecast.

Optimal Data Variance
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A variance that is underestimated wastes 
data, as satellite constraints that would be 

applied are minimized.

Small Data Variance
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